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Abstract 

          

The aim of this paper is to present an interactive fuzzy programming method for solving integer bilevel 

programming problems (IBLPP) involving nonlinear conflicting goals with quadratic constraints. The 

problem is solved in two phases. Feasible region of the integer decision variables is obtained first. In 

phase I, fuzzy programming model of the problem is formulated using the concept of membership 

function. Finally the concept of ratio of satisfactory degree defined by Lai[7] is applied to generate a 

satisfactory solution. Illustrative numerical example is provided to demonstrate the feasibility of the 

approach. 
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1. Introduction 

Bilevel programming problems (BLPP) concerns with a large hierarchical system with two 

decision makers. There are two hierarchical levels in BLPP. One decision maker (DM) is located at each 

level. The upper level decision maker called the leader and the lower level decision maker called the 

follower independently controls a set of decision variables. Both the leader and follower wish to 

maximize their objective functions on the given constraint set. The decision of the leader affects the 

decision made by the follower. Also the decision of the follower influences the degree of achievement of 

the leader’s decision.  

The Stackelberg strategy has been employed to obtain a solution of the BLPP. In Stackelberg 

strategy the leader first declares his/her decision and then the follower tries to maximize his/her objective 

function. The DM’s hardly communicate while employing Stackelberg solution. Even if they 

communicate there is no agreement which binds them. The problem is a non-convex problem even if we 

consider linear objective functions with linear constraints. Various approaches such as vertex enumeration 
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approach [Candler and Townsley 1982, Wen and Bialas 1980], Kuhn-Tucker approach [Candler and 

Townsley 1982, Cruz 1978] and the multiple objective linear programming techniques [Bard 1984] have 

been used extensively for obtaining the Stackelberg solution. BLPP are NP-hard problems and are non-

cooperative in nature. 

The general BLPP [Bard 1991, Bialas and Karwan 1984, Candler and Townsley 1982] is 

formulated as 

(P1)  
1

1 1 2
X

MaxF (X ,X )   

 where for a given X1, X2 solves 

 
2X

Max F2(X1, X2) 

 subject to  

 (X1, X2)  S  

where the feasible region S( ) is assumed to be bounded. The vector of decision variables X1  1n
R  and 

X2   2n
R  are  under the control of leader and follower respectively, n1, n2  1.  F1 and F2 are the objective 

functions of the leader and the follower respectively. 

  According to the leader – follower Stackelberg game and mathematical programming, the 

definitions of the solution for the model BLPP are: 

Definition 1 : For any X1 (X1  So = {X1 | (X1, X2)  S}) given by the leader, if the decision making 

variable X2 (X2  S1 = {X2 | (X1, X2) S}) at the lower level is an optimal solution of the follower then 

(X1, X2) is a feasible solution of the model BLPP. 

Definition 2 : If   (X1*, X2*) is a feasible  solution of BLPP and  there  does  not    exist        any      other       

feasible       solution    (X1, X2)      S     such     that   F1 (
*

2

*

1 X,X )   F1 (X1, X2) then ( *

2

*

1 X,X )  is the 

optimal solution of the model BLPP.       

To avoid the problem arising from Stackelberg strategy, the two DM’s must show their willingness 

to cooperate with each other so that the minimum level of satisfaction is also taken into consideration. 

This will lead to a solution which is satisfactory for both the DM’s. Keeping in view the overall 

satisfaction of the BLPP, Lai[7] has introduced the concept of fuzzy set theory to solve BLPP’s and 

multi-level programming problems in 1996. Shih.et.al[10] have extended this concept. Their solution 

methodology is different from Stackelberg method, as all the DM’s cooperate with each other and 
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decisions of all the DM’s are taken into consideration. First the higher level DM define a membership 

function for their fuzzy goals or preferences of their objective functions and decision variables controlled 

by them. Then the lower level DM optimizes the objective function with a constraint on membership 

function of the higher level DM. This may lead to a solution which is not desired by all the DM’s because 

the fuzzy goals of the objective functions and the decision variables may be inconsistent.   

To eliminate the drawback of Lai.et.al method, Sakawa.et.al [9] proposed interactive fuzzy 

programming approach to obtain a satisfactory solution of bilevel programming problem. Numerous 

method have been developed for solving linear bilevel programming problems [1,8,13]. However, 

methods for obtaining a satisfactory solution for nonlinear bilevel programming problem are very few. 

In this paper, we present an interactive fuzzy programming approach for solving bilevel integer 

programming problems with non-linear objective functions and quadratic constraints. In order to 

overcome the difficulty in the methods of Lai.et.al., after finding the feasible region of the decision 

variables and eliminating the fuzzy goals for the decision variables, the interactive approach method for 

bilevel integer programming problems with non-linear objective functions is applied. In our interactive 

approach, after determining the fuzzy goals of the DM at both the levels, a satisfactory solution is derived 

efficiently by updating the satisfactory degrees of DMs with consideration of overall satisfactory balance 

between both the levels. Illustrative numerical example is provided to demonstrate the feasibility of the 

proposed approach. 

2. Problem Formulation 

We consider an integer non-linear programming problem with quadratic constraints. The problem 

can be formulated as 

(P2)   
1

1 1 2
X

MaxF (X ,X )   

 where for a given X1, X2 solves 

 
2X

Max F2(X1, X2) 

  subject to  

 (X1, X2)  S = {(X1,X2) RN / hi (X1,X2) ≤ bi, i = 1,2,…,M, X1, X2 ≥ 0 ,  

                                      X1 and X2 are integers, b RM} 

where the vector of decision variables X1  1n
R  and X2   2n

R  are  under the control of  leader and 

follower respectively,   n1 , n2   1,  N = n1  + n2.   X = (x1, x2, …, xn). F1 and F2 are non-linear 
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objective functions of   the leader and the follower   respectively. hi, i = 1, 2, …, M are quadratic 

functions. bi is the right hand side of the ith  resource constraint. The feasible region S( ) is assumed to 

be bounded. 

3.  Solution Procedure 

The problem (P2) is solved in two phases: 

Phase 1: An auxiliary problem is designed for generating feasible region of the decision variables. 

Phase 2: An interactive fuzzy programming approach is applied to obtain a satisfactory solution. 

3.1 Solution Methodology of Phase 1 

Since the achievement of the objective functions of the leader and follower depends on the constraint 

set 

                              hi (X1,X2) ≤ bi,   i = 1,2,…,M                                                  (1) 

                              X1, X2 ≥ 0 , X1 and X2 are integers 

So, we first we apply the transformations to convert the variables in the form of 0,1. 

The following transformation is employed and the integer variables xk are replaced by the sum of a 

number of zero-one variable  

                  xk = ∑
1

12
kN

n

n



 yn, where yn are 0 or 1                                                        (2) 

The upper limit on the variable xk is used to determine the value of Nk Every zero-one variable xn 

with positive exponent is replaced by that variable to the power one. That is 

                          xn
y  = xn                                                                                        (3) 

Also, every product of 0-1 variables is changed to a linear 0-1 function as follows: 

Let u = xi xj. Introduce the following constraints 

                   xi + xj – u ≤ 1                                                                                    (4) 

                   -  xi - xj + 2u ≤ 0    where u = 0, 1 

Using these transformations, the constraint set (1) is linearized to form an auxiliary problem. The 
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feasible region of the auxiliary problem is called the extended feasible region. 

All the extreme points can be obtained by using the phase I method.     

The optimal solution of the problem (P2) may correspond to any one of the extreme point or nearer to 

any of them in the extended feasible region S. We obtain the feasible region of the decision variables as 

follows: 

 Find all the extreme point solution of the problem. Let X x n

    (=  x  ...,  x )1 2, ,  be the extreme point 

solution corresponding to the th iteration. Find the convex combination of these extreme point solutions 

as 

                         







 
1

v

X S                                                                          (5) 

where   



 



    
1

1 0 1 1
V

v V, ( ,.... )    and  are scalars.  

Let Xw (w=1, …, W), W  V, be the different solutions obtained for different sets of values of  ( 

= 1, 2, …, V) in the augmented feasible region. Then, the feasible regions of the decision variables appear 

as 

 S = { ),x,...,x,(xX;X w

n

w

2

w

1

ww   w = 1, 2, …, W}                                          (6) 

The set S is called the effective solution set 

3.2    Solution Methodology of Phase 2 

 In the BLPP under consideration, since both the DMs would like maintain a balance of decision 

powers, they would have to relax their individual optimal decision. In such a case, the objective functions 

F1, F2 and the decision vector X1 are transformed into fuzzy goals which are quantified by eliciting the 

corresponding membership functions. 

Characterization of Membership functions 

Using the concept of fuzzy sets, the membership functions can be defined based on the following 

steps given by Zimmermann [Zimmermann, 1978].  

Step1: Find the individual best solutions ( max

k
F ) for each of the objective, where   max

k
F = )X(Fmax

k
SεX

,  k = 

1,2.                                                                                  (7) 
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Step2:  Find the individual worst solution ( min

k
F ) for each of the objective where  min

k
F = (X)Fmin

k
SεX

 ,  k = 

1,2                                                                                    (8) 

Step3: Decision maker k, k=1,2 determines the membership function 
kF

μ using the variation ratio of the 

degree of satisfaction in the interval between the individual maximum (7) and the individual minimum 

(8). The membership function for the objective Fk(X) is defined as  

                           1                  if  max

kk
F(X)F >  

kFμ  =          
min

k

max

k

min

kk

F-F

F-(X)F
         if min

k
F  ≤ Fk(X) ≤  max

k
F                           (9) 

                          0                   if  (X)F
k  < min

k
F  

Decision maker k specifies the value min

k
F  of the objective function for which the degree of satisfaction is 

0 and the value max

k
F of the objective function for which the degree of satisfaction is 1. If the value is 

smaller than min

k
F  then 

kFμ  = 0 and if the value  is larger than max

k
F  then 

kFμ = 1. 

4.  Formulation of Fuzzy Programming Model 

After eliciting the membership functions, DM1 specifies a minimal satisfactory level δ  [0, 1] for 

the membership function 
1F

μ and the DM2 maximizes the membership function 
2F

μ subject to the 

condition that DM1’s membership function 
1F

μ is larger than or equal to δ together with the extended 

feasible constraint set, that is DM2 solves the following problem: 

       

 (P3)       Max 
2F

μ  

                     subject to 

                            
1F

μ ≥ δ    

                             X  S 

Constraints on the fuzzy goals for decision variables are eliminated in our formulation (P3). 

If the optimal solution to problem (P3) exists, then the DM1 obtains a satisfactory solution having 

a satisfactory degree larger than or equal to δ specified by DM1’s own self. However, if the DM1 assigns 

a larger minimal satisfactory degree, the DM2 achieves a smaller satisfactory degree. Thus, a relative 
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difference between the satisfactory degrees of DM1 and DM2 becomes larger and the overall satisfactory 

balance between both levels may not be achieved. 

To take account of the overall satisfactory balance between both the levels, DM1 needs to 

compromise with DM2 on DM1’s minimal satisfactory level. 

The optimal solution (X*, λ*) to problem (P3) obtained by solving the problem satisfies the 

condition 
1F

μ ≥ δ, it follows that the solution is satisfactory for DM1. It may happen that the solution 

obtained does not always maintain overall satisfactory balance between both levels. Then the ratio of 

satisfactory degree between both the levels 
)X(

)X(

*

F

*

F

1

2




  which is defined by Lai [Lai, 1996] is useful. Let  

 L and  U denote the lower and upper bound of δ specified by DM1, respectively. If    > U  i.e. 

)X( *

F2
  >  U )X( *

F1
  then the DM1 increase the value of δ. DM2 solves the problem (P3) with the 

updated value δ̂  and the DM1 obtains a larger satisfactory degree whereas the DM2 accepts a smaller 

satisfactory degree. Conversely, if   <  L  i.e. )X( *

F2
  <  L )X( *

F1
 , then the DM1 decreases the 

minimal  satisfactory level δ and the DM1 accepts a smaller satisfactory degree and the DM2 obtains a 

larger satisfactory degree. 

            At  the  kth  iteration ,  let  k

Fi
 ,i = 1, 2  denote  satisfactory degrees of DMi, i = 1,2 and let k  = 

)X(

)X(

*k

F

*k

F

1

2




 denote the satisfactory degrees of the upper and the lower levels. Let a corresponding solution be 

k*X . When DM2 proposes the solution to DM1 and the following condition is satisfied, DM1 concludes 

the solution as a satisfactory solution and the iterative interactive process terminates. 

Termination condition of the interactive process for bilevel programming problems 

          The interactive process terminates if the ratio of satisfactory degree at kth iteration k  [ L,  U ]. 

This condition maintains the overall satisfactory balance between both the levels. 

Procedure for updating the minimal satisfactory level   

            If the ratio k  exceeds its upper bound, the leader increases its minimal satisfactory level. 

Conversely, if the ratio k  is below its lower bound, then the leader decreases its minimal satisfactory 

level. 
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5.   Algorithm  

The outline of the above procedure is summarized in the following algorithm: 

The Algorithm of the interactive fuzzy programming for BLPP 

Step 0 (Pre-process) 

DM1 specifies the lower and the upper bounds of the ratio of satisfactory degrees  . 

Step 1 Obtaining effective feasible solution set 

    Obtain the effective feasible solution set S as given in phase 1.  

Step 2 Problem Formulation 

    2a) DM i, i = 1, 2 obtains the membership functions for the objective functions of the fuzzy goal for 

their objective functions. 

    2b) DM1 specifies the minimal satisfactory level δ. 

Set l= 1. 

Step 3 Formulation of FPP 

    DM2 formulates the fuzzy programming problem (P3).  

Step 4 

DM2 solves the problem (P3) and then proposes a solution Xl and  l to DM1 

Step 5 Termination Condition 

If the solution proposed by the DM2 to DM1 satisfies the termination conditions, DM1 concludes the 

solution as a satisfactory solution and the algorithm stops. Otherwise set l = l+1. 

Step 6 Updating minimal satisfactory level  

DM1 updates the minimal satisfactory level δ in accordance with the procedure of updating minimal 

satisfactory level. Go to Step 3. 

6.  Numerical Example 

In this section, we provide illustrative numerical example for bilevel programming problem to 

demonstrate the feasibility of the proposed method. 
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Example: Consider the following integer bilevel programming problem with nonlinear objective function 

and quadratic constraints. 

  (P4)   3

2

211
x

x3x2x-FMax
1

++=  

             
12

x,x
x(FMax

32

= +2)2 + 2

32
xx +  

             subject to   

                       2

2

1
x4x + ≤ 4 

                      3

2

21
x2xx ++  ≤ 4 

                       x1, x2, x3 ≥ 0 and x1, x2, x3 are integers 

Step 0 Suppose the DM1specifies the lower and the upper bounds of  as [0.6, 1]. 

Step 1   Obtaining the effective solution set 

Upper limit of x1 is 2, x2 is 1 and that of x3 is 2. 

Let x1 = y1 + 2y2           x2 = y3              x3 = y4 + 2y5 

   where yi = 0, 1; i = 1,2,3,4,5 

Constraint set in (P4) becomes equivalent to 

           321

2

2

2

1
y4yy4y4y +++ ≤ 4 

           
54

2

321
y4y2yy2y ++++ ≤ 4                                                                  (10) 

            yi = 0, 1;  i = 1,2,3,4,5 

By linearization technique of section 3.1, the above constraint set (10) becomes  

          
3121

y4u4y4y +++  ≤ 4 

          
54321

y4y2yy2y ++++ ≤ 4 

           21
yy + - u1  ≤  1 

            -y1 – y2 +2u1 ≤ 0                                                                                       (11) 
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            u1 = 0, 1, u1 = y1y2 

           yi = 0, 1;  i = 1,2,3,4,5 

The extreme points are obtained by solving the problem in (11) without considering the 

integrability condition using phase I method. Now by taking convex combination of these extreme points 

the feasible solution set with integral values for (10) appear as 

(y1, y2, y3, y4, y5) = {(1,0,0,0,0), (1,0,0,1,0), (0,1,0,0,0,), (0,1,0,1,0), (0,0,1,0,0),  (0,0,1,1,0), (0,0,0,1,0), 

(0,0,0,2,0), (0,0,0,0,0,), (0,0,0,0,1)} 

S1 = {(x1, x2, x3) = (1,0,0), (1,0,1), (2,0,0,), (2,0,1), (0,1,0), (0,1,1),                                                      

(0,0,1),(0,0,2),(0,0,0)} 

Step 2   Problem Formulation 

The individual best and the worst solutions for the DMs are found as 

         6Fmax

1
=         =min

1
F -2 

        17Fmax

2
=        =min

2
F 4 

Now the membership functions can be built by (9) as 

 

                         1                      if  
3

2

21
x3x2x- ++ ≥ 6 

1F
μ  =   

26

2x3x2x-
3

2

21

+

+++
      if -2 ≤ 

3

2

21
x3x2x- ++ ≤  6                    

                          0                      if  
3

2

21
x3x2x- ++ ≤ -2  

 

                         1                           if  2

32

2

1
xx)2x( +++ ≥17 

2F
μ  =    

4-17

 4-xx2)(x 2

32

2

1
+++

      if 4≤ 2

32

2

1
xx)2x( +++  ≤  17                    

                          0                           if  2

32

2

1
xx)2x( +++ ≤ 4  

 Suppose the DM1 determines the initial minimal satisfactory level as δ = 1  
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Step 3   Formulation of Fuzzy Programming Problem 

The fuzzy problem for this numerical example can be formulated as 

            Max 
2F

μ  

            subject to 

            
1F

μ ≥ δ    

             X  S 

Step 4 

DM2 solves this problem. The solution obtained is (0,0,2) with  
1F

μ = 1 and  
2F

μ = 4/13.  = 0.3076  

[0.6, 1] 

Step 5  

Since  <  L, so DM1 decreases δ. Consequently, DM1 changes the minimal satisfactory level.  

Step 6  

Suppose the DM1 changes the minimal satisfactory level from 1 to 0.8.  

Step 3 

The problem is reformulated as  

            Max 
2F

μ  

            subject to 

            
1F

μ ≥ 0.8    

             X  S 

 

Step 4 

DM2 solves the above problem. The optimal solution is (0,0,2)   with  
1F

μ = 1 and  
2F

μ = 4/13.  = 0.3076 

  [0.6, 1] 

Step 5 and 6 

Since  <  L, so DM1 decreases δ, so the DM1 changes the minimal satisfactory level to 0.6. 
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Step 3 & 4 

 DM2 formulates and solves the corresponding problem.  

The    optimal    solution    to   this problem   is (0,0,2)   with   
1F

μ = 1 and  
2F

μ = 4/13.  = 0.3076  [0.6, 

1] 

Step 5 & 6 

Since  <  L, so DM1 decreases δ, so the DM1 changes the minimal satisfactory level to 0.5. 

Step 3, 4 & 5  

 DM2 formulates and solves the corresponding problem. The optimal solution to this problem is (1,0,1) 

with  
1F

μ = 0.5 and  
2F

μ = 0.4613.  = 0.923  [0.6, 1] 

Hence the satisfactory solution for the given bilevel programming problem is (1,0,1)  with  F1 = 2, F2 = 

10,   
1F

μ = 0.5  and  
2F

μ = 0.4613.  
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